

The usual dose of fospropofol is a bolus of 6.5 mg/kg followed by 1.6 mg/kg (supplemental) as needed to obtain the desired level of sedation. The usual dose is given to patients aged 18 to <65 years of age who are healthy or have a mild systemic disease based on the American Society of Anesthesiologists (ASA) Physical Classification (see table 2).³ For patients > 65 years of age or who have severe systemic disease (ASA Physical Classification 3 or 4), 75% of the initial dose is given (bolus and supplemental). Patients whose actual body weight is less than 60 kg should be dosed as a 60 kg patient, and patients whose actual body weight is greater than 90 kg should be dosed as a 90 kg patient. Since fospropofol is preservative-free, each vial is intended for single use and should be discarded after the bolus injection is drawn up into a sterile syringe.

Table 2. Summary of ASA classification used to dose fospropofol.⁷

Healthy patient	P1
Mild disease	P2
Severe disease	P3
Severe, life-threatening disease	P4
Not expected to survive without the surgery	P5
Brain-dead patient undergoing organ removal for donation	P6

ASA=American Society of Anesthesiologists

Literature Summary

Cohen conducted a randomized, double-blind, multicenter, dose-ranging trial to assess the efficacy and safety of fospropofol in patients undergoing elective colonoscopy.⁸ A total of 127 patients with an ASA status ranging from P1 to P4 were randomized to receive an initial dose of fospropofol 2 mg/kg (n=25), 5 mg/kg (n=26), 6.5 mg/kg (n=26), 8 mg/kg (n=24), or midazolam 0.02 mg/kg (n=26). Dosing was adjusted for weight and age as described above, and all patients were given fentanyl 50 mcg prior to study treatment. Up to 2 additional supplemental (25% of the initial bolus dose) doses of fospropofol were permitted as at for patients assigned to the drug, whereas the midazolam group received up to 4 supplemental doses of 1 mg midazolam. The primary efficacy outcome measure was sedation success. Sedation was considered successful if:

- 3 consecutive Modified Observer's Assessment of Alertness/Sedation Scale (MOAA/S) of <4 (0=does not respond to painful trapezius squeeze; 5=alert)
- no need for alternative sedatives during procedure
- no need for manual or mechanical ventilation

Key secondary endpoints included measures of sedation level and time to sedation, doses required (sedative and fentanyl), need for alternative sedative(s), patient and doctor satisfaction, and safety.⁸

Sedation success was dose-dependent across all groups: 2 mg/kg (24%), 5 mg/kg (35%), 6.5 mg/kg (69%), and 8 mg/kg (96%) vs. 81% with midazolam. The success rates were higher in the 6.5 and 8 mg/kg groups (p<0.001, for both compared to lower doses).⁸ A greater number of patients in the 8 mg/kg treatment group (25%) had MOAA/S scores of 0 or 1, indicating the patient is at the most sedated state at any time after the first dose as compared to the 6.5 mg/kg dose (4%). No significant difference was found among the fospropofol dosing regimens in terms of need for alternative sedative(s), time to sedation, and number of supplemental doses (fospropofol or fentanyl); however, an inverse relationship between dose used and need for alternative sedatives was found. Patients in the 6.5 mg/kg group had the highest overall satisfaction scores; however, this did not reach statistical significance. Doctors' satisfaction scores were higher in the 6.5 mg/kg group (26.9% ranked scores 9 to 10) and 8 mg/kg group (50% ranked scored 9 to 10; p=0.0028 for dose-response relationship). The most common adverse event reported with fospropofol was paresthesia in 49 (49%) of 101 patients, which generally occurred in the perineal area. The author concluded that fospropofol 6.5 mg/kg provided the desired balance of efficacy and safety.

Silvestri and colleges conducted a randomized, double-blind, phase 3 study in 252 patients to determine the efficacy and safety of fospropofol in patients undergoing flexible bronchoscopy.⁹ Adult patients with ASA classifications of P1 to P4 were randomly assigned

(2:3) to receive a fospropofol bolus dose of 2 mg/kg (n=102) or 6.5 mg/kg (n=150) followed by up to 3 supplemental doses at 25% of the bolus dose. Initial doses were adjusted for age, ASA Physical Classification System status, and weight. For the maintenance phase, supplemental fospropofol doses could be administered at intervals > 4 minutes if the patient had a MOAA/S score of > 4 and demonstrated purposeful movement. Fentanyl 50 mcg was given prior to fospropofol, and an additional 25 mcg was allowed for pain during the maintenance phase. The endpoints mirrored those of the trial conducted by Cohen (see above).⁸

The primary efficacy endpoint of sedation success was significantly higher in the 6.5 mg/kg group vs. the 2 mg/kg group (88.7% vs. 27.5%, respectively, p<0.001). ⁹ Patients in the 6.5 mg/kg needed a mean of 1.7 supplemental doses compared to a mean of 2.9 in the 2 mg/kg group (p<0.001). Eight percent of patients in the 6.5 mg/kg needed alternative sedation with midazolam vs. 58.8% in the 2 mg/kg group (p=not reported). The median time to sedation was shorter for the 6.5 mg/kg neutres) than for the 2 mg/kg group (18 minutes), p=not reported). Patient satisfaction and physician satisfaction were higher with the 6.5 mg/kg treatment group, but significance was only reached for 2 satisfaction measures (both assessed by patients); fewer patients reported being awake during the procedure in the higher dose group (p<0.01). The most common adverse events reported were paresthesia (47.6%) and pruritus (14.7%). The most common cardiopulmonary adverse events were hypoxemia (14.3%) and hypotension (3.2%). Patients in the 6.5 mg/kg group accounted for all 8 patients with hypotension. The authors concluded that fospropofol is an effective sedative regimen that results in moderate sedation with an acceptable safety profile.

Conclusion/current status

Fospropofol has been assessed for the use in sedation for surgical procedures, sedation for cardiac catheterization, and sedation for the intensive care unit setting, but these studies have yet to be published.¹⁰ Although fospropofol is FDA approved (December 2008); it is not currently available as it is awaiting a scheduling decision from the Drug Enforcement Agency (DEA). The role of fospropofol for patients undergoing monitored anesthesia care sedation for diagnostic or therapeutic procedures has been evaluated in 2 published clinical studies; however, use of conventional propofol during colonoscopy and bronchoscopy procedures is generally not problematic since the procedures are of short duration. In addition, clinical experience with fospropofol is limited, including safety of prolonged infusions as compared to the available experience in the literature with propofol. Until further studies are published evaluating efficacy and adverse effects, benefit over propofol has not been established.

References

- 1. Propofol [package insert]. Lake Forest, IL: Hospira, Inc; 2008.
- Propofol [package insert]. Schaumburg, IL: Abraxis Pharmaceutical Products; 2007.
- 3. Propofol [package insert]. Deerfield, IL: Baxter Healthcare Corporation; 2004.
- 4. Propofol [package insert]. Irvine, CA: Teva Parenteral Medicines, Inc; 2008.
- Centers for Disease Control and Prevention. Postsurgical infections associated with an extrinsically contaminated intravenous anesthetic agent- California, Illinois, Maine, and Michigan, 1990. *MMWR Weekly*. 1990;39(25):426.
- 6. Fospropofol [package insert]. Woodcliff Lake, NJ: Eisai Inc; 2008.
- American Society of Anesthesiologists. ASA Physical Status Classification System. http://www.asahq.org/clinical/physicalstatus.htm. Accessed January 20, 2009.
- Cohen LB. Clinical trial: a dose-response study of fospropofol disodium for moderate sedation during colonoscopy. *Aliment Pharmacol Ther.* 2008;27 (7):597-608.
- Silvestri GA, Vincent BD, Wahidi MM, Robinette E, Hansbrough JR, Downie GH. A phase 3, randomized, double-blind study to assess the efficacy and safety of fospropofol disodium injection for moderate sedation in patients undergoing flexible bronchoscopy. *Chest*. 2009;135(1):41-47.
- U.S. National Institutes of Health. Clinical Trials.Gov. http://clinicaltrials.gov/ct2/results?term=fospropofol. Accessed January 19, 2009.

By Meghan Estill, PharmD

College of Pharmacy | Student Affairs | Academic Affairs | Continuing Education | Office of the Dean | Information Technology UIC Home | College Phonebook | Course Catalog | Site Map | Contact the College

Copyright $\ensuremath{\textcircled{O}}$ 2007 The Board of Trustees of the University of Illinois | Web Privacy Notice